你的位置:首頁 > 電源管理 > 正文

功率MOSFET線性區(qū)工作設計

發(fā)布時間:2018-11-28 責任編輯:xueqi

【導讀】功率MOSFET有三個工作狀態(tài),在漏極導通特性曲線上,對應的是三個工作區(qū):截止區(qū),線性區(qū)和可變電阻區(qū)。注意到:MOSFET的線性區(qū)有時也稱為:恒流區(qū)或飽和區(qū)。
 
1、概述
 
在筆記本電腦主板、LCDTV主板、STB機頂盒等電子系統(tǒng)應用中,內部有不同電壓的多路電源,通常需要采用功率MOSFET作為負載切換開關,控制不同電壓的電源的上電時序;同時還有USB接口,用于輸出5V電壓,這些電源通常后面帶有較大的電容,也需要負載開關,限制后面電容在上電的過程中充電產(chǎn)生的大的浪涌電流,以保護后面所帶的負載芯片的安全,同時不會導致前面的電源電壓的跌落產(chǎn)生復位的問題。
 
筆記本電腦主板19V輸入端,有二個背靠背的功率MOSFET,一個用于負載開關作軟起動,限制浪涌電流,另一個用于防反接。
 
圖1:筆記本電腦電源
 
圖2:筆記本電腦主板輸入電路
 
在通訊系統(tǒng)中,也廣泛使用熱插撥電路,由功率MOSFET組成的熱插撥電路和上述的負載開關的功能類同。在這些應用中,通常在功率MOSFET的柵極和源極或柵極和漏極并聯(lián)額外的電容,延長功率MOSFET在線性區(qū)的時間,以限制流涌的電流。從圖7波形可以明顯看到:功率MOSFET完全導通前,有比較長的一段時間工作于時間線性區(qū)。
 
圖3:通信系統(tǒng)機房
 
圖4:通信系統(tǒng)機柜板卡熱插撥
 
圖5:通信系統(tǒng)機柜
 
圖6:通信系統(tǒng)板卡電路
 
圖7:通信系統(tǒng)板卡熱插撥波形
 
在電池保持板PCM過流關斷的過程中,從波形可以看到:功率MOSFET同樣也有較長的一段時間工作于線性區(qū)。
 
圖8:電池保持板電路
 
圖9:電池保持板關斷波形
 
在一些輸出電壓需要低噪聲的應用,如輸出為12V、24V的供電電源,通常在開關電源輸出的后面接線性的穩(wěn)壓器來降低噪聲,由于成本考慮或找不到合適的集成線性穩(wěn)壓調節(jié)器,一般采用分立元件方案組成線性穩(wěn)壓調節(jié)器,使用中壓的功率MOSFET作為調整管;在一些風扇或電機調速的應用中,也是采用功率MOSFET作調整管,通過控制VGS的電壓,來調節(jié)漏極的電流,從而控制風扇、電機的轉速。這些應用中,功率MOSFET完全工作在線性區(qū)。
 
然而,在開關電源中,功率MOSFET工作在完全關斷或完全導通狀態(tài),通過線性區(qū)的速度比較快,也就是驅動電壓VGS從閾值電壓VGS(th)開始,到米勒平臺結束的這段時間,比較快,即使如此,也產(chǎn)生了較大的開關損耗。
 
功率MOSFET工作完全工作在線性區(qū)或者長的時間工作在線性區(qū),會產(chǎn)生非常大的功率損耗,產(chǎn)生高的熱應力;同時由于工作電壓高,內部電場大,容易發(fā)生單元熱不平衡而局部失效的問題。功率MOSFET工作于線性區(qū)的這些問題,將用多篇文章進行論述,給出一些設計的參考思路。
 
2、功率MOSFET線性區(qū)工作
 
功率MOSFET也有三個工作狀態(tài),在漏極導通特性曲線上,對應的是三個工作區(qū):截止區(qū),線性區(qū)和可變電阻區(qū)。如圖10所示。注意到:MOSFET的線性區(qū)有時也稱為:恒流區(qū)或飽和區(qū)。
 
圖10:AOT1404的漏極導通特性
 
在前面柵極電荷的章節(jié),設計過功率MOSFET的開通過程。在漏極導通特性曲線上,當柵極的驅動電壓加在柵極上時,由于柵極有輸入電容,電容的電壓不能突變,因此,柵極的電壓隨時間線性上升,此時功率MOSFET仍然工作在截止區(qū),圖10中A-B所示。
 
當柵極的電壓上升到閾值電壓時,漏極開始流過電流,此時,功率MOSFET進入到線性區(qū)。隨著柵極的增加,漏極電流也增加,圖10中B-C所示。這個過程中,VDS電壓變化不大,CGD的電容小,因此很快的放電。這一段時間也可稱為di/dt時間段。
 
漏極電流的變化值等于器件的跨導乘以柵極電壓的變化值。
 
 
當漏極的電流達到系統(tǒng)的最大允許電流時,此時漏極電流不再增加,維持最大值并保持恒定,因此,柵極的電壓受到跨導的限制,也要保持恒定,圖10中C-D所示。
 
此時,功率MOSFET會在一段時間內工作在米勒平臺區(qū),即相對穩(wěn)定的恒流區(qū)。柵極處于米勒平臺區(qū)保持恒定的原因在于:漏極電壓VDS開始降低,那么導致Crss兩端的電壓VGD也會隨之急劇的變化。
 
 
從上式可以看到,只有大的電流才能產(chǎn)生大的VGD變化率,來抽取Crss的電荷,因此幾乎所有柵極的電流都被Crss抽走。同時,Crss是一個動態(tài)參數(shù),在漏極電壓變化的過程中,Crss的電容值也會急劇的增加,此時動態(tài)的Crss主導著輸入電容,這樣,電容CGS相對而言其回路幾乎沒有電流,因此,柵極的電壓會維持恒定,從而產(chǎn)生米勒平臺。這一段時間也可稱為dv/dt時間段。
 
當Crss的電荷全部抽走后,米勒平臺結束,同時,VDS電壓也降到最低值,即電流和此時的RDS(on)乘積。隨后柵極電壓繼續(xù)增加,增加到驅動電壓的最大值,如圖10中D-E所示,此時功率MOSFET進入可變電阻區(qū)。
 
整個過程中,A-B為截止區(qū),D-E為可變電阻區(qū),B-C-D為線性工作區(qū)。線性區(qū)產(chǎn)生開關損耗,對于一個開關周期,此時間段越長,開關損耗越大。
 
來源:松哥電源
要采購開關么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
壓控振蕩器 壓力傳感器 壓力開關 壓敏電阻 揚聲器 遙控開關 醫(yī)療電子 醫(yī)用成像 移動電源 音頻IC 音頻SoC 音頻變壓器 引線電感 語音控制 元件符號 元器件選型 云電視 云計算 云母電容 真空三極管 振蕩器 振蕩線圈 振動器 振動設備 震動馬達 整流變壓器 整流二極管 整流濾波 直流電機 智能抄表
?

關閉

?

關閉