-
解讀跨阻放大器的結(jié)構(gòu)特性與應用
用于測距和檢測的光多用于這些關(guān)鍵應用,比如先進的駕駛員輔助系統(tǒng)(ADAS),光探測和測距(LiDAR)以及未來的自動駕駛汽車,以及移動式脈搏血氧儀。然而,檢測信號的可靠性在很大程度上取決于檢測電路的準確性和穩(wěn)定性。
2021-01-05
-
利用包絡(luò)追蹤功能提高聲頻放大器的效率
聲頻放大器的一個關(guān)鍵設(shè)計難題在于產(chǎn)生電源電壓。使用單芯鋰電池作為電源時,升壓轉(zhuǎn)換器會將該電壓升高,從而使聲頻放大器產(chǎn)生偏壓。升高的電壓水平要在聲頻質(zhì)量和功耗之間達成折衷。您希望將電源電壓升高到足以不扭曲或修剪某些聲頻信號(峰值功率較高)的水平。但您也不希望在其它聲頻信號期間耗散大量過電壓(峰值功率較低)。那么,魚與熊掌能否兼得呢?
2021-01-05
-
USB供電、915MHz ISM無線電頻段、具有過溫管理功能的1W功率放大器
國際電信聯(lián)盟(ITU)分配了免許可的915 MHz工業(yè)、科學和醫(yī)學(ISM)無線電頻段供區(qū)域2使用,該區(qū)域在地理上由美洲、格陵蘭島和一些東太平洋群島組成。在該區(qū)域內(nèi),多年來無線技術(shù)和標準的進步使此頻段在短距離無線通信系統(tǒng)中頗受歡迎。該ISM頻段對應用和占空比沒有任何限制,常見用途包括業(yè)余無線電、監(jiān)視控制與數(shù)據(jù)采集(SCADA)系統(tǒng)以及射頻識別(RFID)。
2020-12-25
-
ADALM2000實驗:零增益放大器
在設(shè)計電路時,需要考慮某些器件值之間的巨大差異,這一點非常重要。設(shè)計人員的核心目標是,使得這些差異不會對電路產(chǎn)生影響,以便設(shè)計出在所有潛在條件下都滿足規(guī)格的電路。幾乎所有電路都有一個設(shè)計共性,即建立穩(wěn)定偏置或工作點電平。這個看似微小的設(shè)計部分可能導致產(chǎn)生最具挑戰(zhàn)性且最有趣的電路問題。
2020-12-23
-
放大器相位裕度與電路穩(wěn)定性判斷方法
相位裕度與增益裕度都是用于評估放大器的穩(wěn)定性的參數(shù)。其中,相位裕度使用更為普遍。本篇將介紹使用相位裕度分析放大器穩(wěn)定性的方法。
2020-12-23
-
集成音頻放大器DSP如何提高音頻放大器的效率
您是否曾認為音頻放大器中的集成數(shù)字信號處理器(DSP)僅用于數(shù)字濾波器、均衡或音頻混合?現(xiàn)實情況是,現(xiàn)代音頻放大器中集成的DSP可以帶來更多好處,包括提高放大器和音頻系統(tǒng)的效率。
2020-12-22
-
RF IC放大器在Keysight Genesys和SystemVue中非線性仿真
傳統(tǒng)上,線性和非線性RF電路仿真占據(jù)了不同領(lǐng)域。為了仿真級聯(lián)小信號增益和損耗,RF設(shè)備設(shè)計人員傳統(tǒng)上一直廣泛使用S參數(shù)器件模型。由于缺乏數(shù)字形式的數(shù)據(jù)(如IP3、P1dB和噪聲),而且常用RF仿真器中歷來沒有頻率變化模型結(jié)構(gòu),所以傳統(tǒng)方式中非線性仿真更具挑戰(zhàn)性。RF電路設(shè)計人員通常采用自制的電子表格來計算級聯(lián)噪聲和失真。但是,這些電子表格難以模擬系統(tǒng)級特性,例如誤差矢量幅度(EVM)和鄰道泄漏比(ACLR);當信號鏈由調(diào)制信號驅(qū)動時,這些特性變得很重要。
2020-12-21
-
DC/DC變換器中恒定導通時間控制的優(yōu)勢
本文探討了在DC/DC變換器中,為什么恒定導通時間控制(COT)比傳統(tǒng)電流模式控制方式更加有效。圖 1為DC/DC變換器的傳統(tǒng)電流模式架構(gòu)圖,它采用的方式是將采樣電流(紅色部分)與電壓反饋環(huán)路中誤差放大器的輸出(藍色部分)進行比較,以生成控制MOSFET的PWM脈沖。
2020-12-17
-
微波功率放大器發(fā)展概述
微波功率放大器主要分為真空和固態(tài)兩種形式?;谡婵掌骷墓β?span id="bigqpov" class='red'>放大器,曾在軍事裝備的發(fā)展史上扮演過重要角色,而且由于其功率與效率的優(yōu)勢,現(xiàn)在仍廣泛應用于雷達、通信、電子對抗等領(lǐng)域。
2020-12-16
-
運放輸出鉗位機理及避免辦法
運算放大器是指一類專門通過改變外圍器件可以實現(xiàn)不同算數(shù)運算的放大器。任何一顆運放都集成了非常多的晶體管,這些晶體管除了構(gòu)成基本的工作電路,同時也會有實現(xiàn)輸入輸出電壓鉗位等保護功能。但是因為生產(chǎn)工藝的原因,在制造這些保證運放正常工作的晶體管的過程中,不可避免地會引入寄生晶體管和二極管。當運算放大器工作在規(guī)格書指定的工作范圍內(nèi)時,這些寄生晶體管不會對芯片的工作造成影響。然而,如果運放工作在超規(guī)格書的范圍時,可能使得芯片的輸出異常,進入輸出鉗位狀態(tài),從而影響電路的正常工作。本文以LM358為例,介紹其進入輸出鉗位狀態(tài)的機理,同時提出避免芯片被鉗位的解決辦法。
2020-12-14
-
傳感器的原理結(jié)構(gòu)及工作過程
向傳感器提供±15V電源,激磁電路中的晶體振蕩器產(chǎn)生400Hz的方波,經(jīng)過TDA2030功率放大器即產(chǎn)生交流激磁功率電源,通過能源環(huán)形變壓器T1從靜止的初級線圈傳遞至旋轉(zhuǎn)的次級線圈,得到的交流電源通過軸上的整流濾波電路得到±5V的直流電源,該電源做運算放大器AD822的工作電源。<
2020-12-14
-
電路波特圖與極點、零點介紹
從放大器失調(diào)電壓、偏置電流、共模抑制比,電源抑制比到開環(huán)增益,在直流或者低頻率范圍內(nèi),影響放大器信號調(diào)理的參數(shù)已經(jīng)介紹完成。期間沒有單獨介紹基礎(chǔ)理論,默認諸位工程師已經(jīng)掌握同相、反相等基礎(chǔ)放大電路,“虛短、虛斷”等放大器基礎(chǔ)特性,以及基爾霍夫、諾頓等電路分析基礎(chǔ)。
2020-12-10
- 0.1微伏決定生死!儀表放大器如何成為醫(yī)療設(shè)備的“聽診器”
- 0.01%精度風暴!儀表放大器如何煉成工業(yè)自動化的“神經(jīng)末梢”
- 如何選擇正確的工業(yè)自動化應用的儀表放大器?
- 從單管到并聯(lián):SiC MOSFET功率擴展實戰(zhàn)指南
- 搶占大灣區(qū)C位!KAIFA GALA 2025AIoT方案征集收官在即,與頭部企業(yè)同臺競逐
- 破解工業(yè)電池充電器難題:升壓or圖騰柱?SiC PFC拓撲選擇策略
- μV級精度保衛(wèi)戰(zhàn):信號鏈電源噪聲抑制架構(gòu)全解,拒絕LSB丟失!
- 如何設(shè)計高性能CCM反激式轉(zhuǎn)換器?中等功率隔離應用解析
- IOTE 2025上海物聯(lián)網(wǎng)展圓滿收官!AIoT+5G生態(tài)引爆智慧未來
- 2025西部電博會啟幕在即,中文域名“西部電博會.網(wǎng)址”正式上線
- 高壓BMS:電池儲能系統(tǒng)的安全守護者與壽命延長引擎
- 高精度低噪聲 or 大功率強驅(qū)動?儀表放大器與功率放大器選型指南
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall