你的位置:首頁 > 測試測量 > 正文

第九講 示波器基礎之電源噪聲測試

發(fā)布時間:2010-01-19 來源:美國力科公司深圳代表處

中心議題: 解決方法:
  • 測量時讓波形占滿屏幕可有效減少量化誤差
  • 需要選擇合適的探頭
  • 測量小電源噪聲推薦使用50歐的輸入阻抗
當今的電子產品,信號速度越來越快,集成電路芯片的供電電壓也越來越小,90年代芯片的供電通常是5V和3.3V,而現(xiàn)在,高速IC的供電通常為2.5V, 1.8V或1.5V等等。對于這類電壓較低直流電源的電壓測試(簡稱電源噪聲測試),本文將簡要討論和分析。

在電源噪聲測試中,通常有三個問題導致測量不準確:
1.示波器的量化誤差;
2.使用衰減因子大的探頭測量小電壓;
3.探頭的GND和信號兩個探測點的距離過大;

示波器存在量化誤差。實時示波器的ADC為8位,把模擬信號轉化為2的8次方(即256個)量化的級別,如果顯示的波形只占屏幕很小一部分,則增大了量化的間隔,減小了精度。準確的測量需要調節(jié)示波器的垂直刻度(必要時使用可變增益),盡量讓波形占滿屏幕,充分利用ADC的垂直動態(tài)范圍。圖一中藍色波形信號(C3)的垂直刻度是紅色波形(C2)四分之一,對兩個波形的上升沿進行放大(F1=ZOOM(C2), F2=ZOOM(C3)),然后對放大的波形作長余輝顯示,可以看到,右上部分的波形F1有較多的階梯(即量化級別),而右下部分波形F2的階梯較少(即量化級別更少)。如果對C2和C3兩個波形測量一些垂直或水平參數(shù),可以發(fā)現(xiàn)占滿屏幕的信號C2的測量參數(shù)統(tǒng)計值的標準偏差小于后者的。說明了前者測量結果的一致性和準確性。
圖一 示波器ADC的量化誤差
圖一 示波器ADC的量化誤差

通常測量電源噪聲,使用有源或者無源探頭,探測某芯片的電源引腳和地引腳,然后示波器設置為長余輝模式,最后用兩個水平游標來測量電源噪聲的峰峰值。這種方法有一個問題是,常規(guī)的無源探頭或有源探頭,其衰減因子為10,和示波器連接后,垂直刻度的最小檔位為20mV,在不使用DSP濾波算法時,探頭的本底噪聲峰峰值約為30mV。以DDR2的1.8V供電電壓為例,如果按5%來算,其允許的電源噪聲為90mV,探頭的噪聲已經接近待測試信號的1/3,所以,用10倍衰減的探頭是無法準確測試1.8V/1.5V等小電壓。在實際測試1.8V噪聲時,垂直刻度通常為5-10mV/div之間。

另外,探頭的GND和信號兩個探測點的距離也非常重要,當兩點相距較遠,會有很多EMI噪聲輻射到探頭的信號回路中(如圖二所示),示波器觀察的波形包括了其他信號分量,導致錯誤的測試結果。所以要盡量減小探頭的信號與地的探測點間距,減小環(huán)路面積。
圖二 探頭上的信號電流回路
 
對于小電源的電壓測試,我們推薦衰減因子為1的無源傳輸線探頭。使用這類探頭時,示波器的最小刻度可達2mV/div,不過其動態(tài)范圍有限,偏移的可調范圍限制在+/-750mV之間,所以,在測量常見的1.5V、1.8V電源時,需要隔直電路(DC-Block)后再輸入到示波器。
圖三 力科PP066探頭示意圖
 
如圖三為力科PP066探頭,該探頭的地與信號的間距可調節(jié),探頭的地針可彈性收縮,操作起來非常方便。通過同軸電纜加隔直模塊后連接到示波器通道上。也可以把同軸電纜剝開,直接把電纜的信號和地焊接到待測試電源的電源和地上。在圖四中把SMA接頭的同軸電纜的一段剝開,焊接到了電腦主板的DDR2供電的1.8V上面,測量其電源噪聲。
圖四 測量某電腦主板DDR2的1.8V的電源噪聲
圖四 測量某電腦主板DDR2的1.8V的電源噪聲
[page]在電源噪聲測試中,還存在示波器通道輸入阻抗選擇的爭議。示波器的通道有DC50/DC1M/AC1M三個選項可選(對于高端示波器,可能只有DC50一個選項)。一些工程師認為應該使用1M歐的輸入阻抗,另一些認為50歐的輸入阻抗更合適。
  
在測試中我們發(fā)現(xiàn):如果使用1倍衰減的探頭測試,當示波器通道輸入為1M歐時,通常其測量出的電源噪聲大于50歐輸入阻抗的。原因是:高頻電源噪聲從同軸電纜傳輸?shù)绞静ㄆ魍ǖ篮?,當示波器輸入阻抗?0歐時,同軸電纜的特性阻抗50歐與通道的完全匹配,沒有反射;而通道輸入阻抗為1M歐時,相當于是高阻,根據(jù)傳輸線理論,電源噪聲發(fā)生反射。這樣,導致1M歐輸入阻抗是測試的電源噪聲高于50歐的。所以,測量小電源噪聲推薦使用50歐的輸入阻抗。
  
在準確測量到電源噪聲的波形后,可以計算出噪聲的峰峰值,如果電源噪聲過大,則需要分析噪聲來自哪些頻率,這時,需要對電源噪聲的波形進行FFT,轉化為頻譜進行分析。FFT中信號時間的長度決定了FFT后的頻譜分辨率,在力科示波器中,支持業(yè)界最大的128M個點的FFT,能準確定位電源噪聲來自于哪些頻率。
圖五 測量某3.3V的電源噪聲
圖五 測量某3.3V的電源噪聲
 
如圖五所示為某光模塊的3.3V電源的噪聲。其噪聲的頻譜最高點的頻率為311.6KHz。這個光模塊輸出的1.25Gbps光信號的抖動測試中發(fā)現(xiàn)了同樣的312KHz的周期性抖動。在圖六中可以看到,把1.25G串行信號的周期性抖動分解后(Pj breakdown菜單),發(fā)現(xiàn)312KHz的周期性抖動為63.7皮秒,在眼圖中也明顯可以觀察到抖動。通過這個案例說明,電源噪聲很可能導致一些高速信號的眼圖和抖動變差。對電源噪聲進行頻譜分析,能有效定位噪聲的來源,指引調試的方向。
圖六:某1.25Gbps信號的抖動和眼圖測試結果
圖六:某1.25Gbps信號的抖動和眼圖測試結果

在使用示波器測量電源噪聲時,為了保證測量精度,需要選擇足夠的采樣率和采集時間。

推薦采樣率在500MSa/s以上,這樣奈科斯特頻率為250M,可以測量到250MHz以下的電源噪聲。對于目前最普及的板級電源完整性分析,250M的帶寬已足夠。低于這個頻率的噪聲可以使用陶瓷電容、PCB上緊耦合的電源和地平面來濾波。而高于這個頻率的只能在封裝和芯片級的去耦措施來完成了。

波形的采集時間越長,則轉化為頻譜后的頻譜分辨率(即delta f)越小。通常我們的開關電源工作在10KHz以上,如果頻譜分辨率要達到100Hz的話,至少需要采集10ms長的波形,在500MSa/s采樣率時,示波器需要500MSa/s * 10 ms = 5M pts的存儲深度。
要采購示波器么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
壓控振蕩器 壓力傳感器 壓力開關 壓敏電阻 揚聲器 遙控開關 醫(yī)療電子 醫(yī)用成像 移動電源 音頻IC 音頻SoC 音頻變壓器 引線電感 語音控制 元件符號 元器件選型 云電視 云計算 云母電容 真空三極管 振蕩器 振蕩線圈 振動器 振動設備 震動馬達 整流變壓器 整流二極管 整流濾波 直流電機 智能抄表
?

關閉

?

關閉