你的位置:首頁 > 電源管理 > 正文

優(yōu)化高電壓IGBT在高效率太陽能逆變器中的應(yīng)用

發(fā)布時間:2011-02-06 來源:電子元件技術(shù)網(wǎng)

中心議題

  • 溝道和平面IGBT
  • 全橋功率逆變器電路

解決方案

  • DC/AC逆變器解決方案正確應(yīng)用低側(cè)和高側(cè)IGBT組合
  • 逆變器效率設(shè)計

隨著綠色電力運(yùn)動勢頭不減,包括家電、照明和電動工具等應(yīng)用,以至其他工業(yè)用設(shè)備都在盡可能地利用太陽能的優(yōu)點(diǎn)。為了有效地滿足這些產(chǎn)品的需求,電源設(shè)計師正通過最少數(shù)量的器件、高度可靠性和耐用性,以高效率把太陽能源轉(zhuǎn)換成所需的交流或者直流電壓。

要為這些應(yīng)用以高效率生產(chǎn)所需的交流輸出電壓和電流,太陽能逆變器就需要控制、驅(qū)動器和輸出功率器件的正確組合。要達(dá)到這個目標(biāo),在這里展示了一個針對500W功率輸出進(jìn)行優(yōu)化,并且擁有120V及60Hz頻率的單相正弦波的直流到交流逆變器設(shè)計。在這個設(shè)計中,有一個DC/DC電壓轉(zhuǎn)換器連接到光伏電池板,為這個功率轉(zhuǎn)換器提供200V直流輸入。不過在這里沒有提供太陽能電池板的詳細(xì)資料,因?yàn)槟欠矫娌皇俏覀冇懻摰闹攸c(diǎn)。

現(xiàn)在,市場上有不同的高級功率開關(guān),例如金屬氧化物半導(dǎo)體FET(MOSFET),雙極型三極管(BJT),以及絕綠柵雙極晶體管(IGBT)來轉(zhuǎn)換功率。然而,這個應(yīng)用要達(dá)到最高的轉(zhuǎn)換效率和性能要求,就要選擇正確的功率晶體管。

多年來的調(diào)查和分析顯示,IGBT比其他功率晶體管有更多優(yōu)點(diǎn),當(dāng)中包括更高電流能力,利用電壓而非電流來進(jìn)行柵極控制,以及能夠與一個超快速恢復(fù)二極管協(xié)同封裝來加快關(guān)斷速度。此外,工藝技術(shù)及器件結(jié)構(gòu)的精細(xì)改進(jìn)也使IGBT的開關(guān)性能得到相當(dāng)?shù)母纳?。其他?yōu)點(diǎn)還包括更好的通態(tài)性能,以及擁有高度耐用性和寬安全工作區(qū)。在考慮這些質(zhì)量之后,這種功率逆變器設(shè)計就會選用高電壓IGBT,作為功率開關(guān)的必然之選。

因?yàn)檫@個設(shè)計所實(shí)施的逆變器拓?fù)鋵儆谌珮?,所以有關(guān)的太陽能逆變器采用了4個高電壓IGBT,如圖1所示。在這個電路中,Q1和Q2晶體管被指定為高側(cè)IGBT,而Q3和Q4則為低側(cè)功率器件。為了要保持總功率耗損處于低水平,但功率轉(zhuǎn)換則擁有高效率,設(shè)計師要在這個DC/AC逆變器解決方案正確應(yīng)用低側(cè)和高側(cè)IGBT組合。[page]


圖1 采用4個IGBT的逆變器設(shè)計

溝道和平面IGBT

為了要同時把諧波和功率損耗降到最低,逆變器的高側(cè)IGBT利用了脈寬調(diào)制(PWM),同時低側(cè)功率器件就用60Hz進(jìn)行變化。通過把PWM頻率定在20kHz或以上操作,高側(cè)IGBT有50/60Hz調(diào)制,輸出電感器L1和L2便可以保持實(shí)際可行的較少尺寸,提供有效的諧波濾波。再者,逆變器的可聽聲也可以降到最低,因?yàn)殚_關(guān)頻率已經(jīng)高于人類的聽覺范圍。

我們研究過采用不同IGBT組合的各種開關(guān)技術(shù)后,認(rèn)定能夠?qū)崿F(xiàn)最低功率耗損和最高逆變器性能的最好組合,是高側(cè)晶體管利用超高速溝道IGBT,而低側(cè)部分就采用標(biāo)準(zhǔn)速度的平面器件。與快速和標(biāo)準(zhǔn)速度平面器件比較,開關(guān)頻率在20kHz的超高速溝道IGBT提供最低的總通態(tài)和開關(guān)功率損耗組合。高側(cè)晶體管的開關(guān)頻率為20kHz的另外一個優(yōu)點(diǎn),是輸出電感器有合理的小尺寸,同時也容易進(jìn)行濾波。在低側(cè)方面,我們把標(biāo)準(zhǔn)速度平面IGBT的開關(guān)頻率定在60Hz,使功率損耗可以保持在最低的水平。

當(dāng)我們細(xì)看高電壓(600V)超高速溝道IGBT的開關(guān)性能,便會知道這些器件為20kHz的開關(guān)頻率進(jìn)行了優(yōu)化。這使設(shè)計在相關(guān)的頻率下能夠保持最少的開關(guān)損耗,包括集電極到發(fā)射極的飽和電壓Vce(on)及總開關(guān)能量ETS。結(jié)果,總通態(tài)和開關(guān)功率損耗便可以維持在最低的水平。根據(jù)這一點(diǎn),我們選擇了超高速溝道IGBT,例如,IRGB4062DPBF作為高側(cè)功率器件。這種超高速構(gòu)道IGBT與一個超高速軟恢復(fù)二極管采用協(xié)同封裝,進(jìn)一步確保低開關(guān)耗損。

此外,這些IGBT不用要求短路額定值,因?yàn)楫?dāng)逆變器的輸出出現(xiàn)短路時,輸出電感器L1和L2會限制電流di/dt,從而給予控制器足夠的時間做出適當(dāng)?shù)幕貞?yīng)。還有,與同樣尺寸的非短路額定IGBT比較,短路額定IGBT提供更高的Vce(on)和ETS。由于擁有更高的Vce(on)和ETS,短路額定IGBT會帶來更高的功率損耗,使功率逆變器的效率降低。

再者,超高速溝道IGBT也提供方形反向偏壓工作區(qū)、最高175℃結(jié)溫,還可承受4倍的額定電流。為了要顯示它們的耐用性,這些功率器件也經(jīng)過100%鉗位電感負(fù)載測試。
[page]
與高側(cè)不同,通態(tài)耗損支配了低側(cè)IGBT。因?yàn)榈蛡?cè)晶體管的工作頻率只有60Hz,開關(guān)損耗對這些器件來說微不足道。標(biāo)準(zhǔn)速度平面IGBT是特別為低頻率和較低通態(tài)耗損而設(shè)計。所以,隨著低側(cè)器件于60Hz進(jìn)行開關(guān),這些IGBT要通過采用標(biāo)準(zhǔn)速度平面IGBT來達(dá)到的最低功率耗損水平。因?yàn)檫@些器件的開關(guān)損耗非常少,標(biāo)準(zhǔn)速度平面IGBT的總耗散并沒有受到其開關(guān)耗損所影響?;谶@些考慮,標(biāo)準(zhǔn)速度IGBT IRG4BC20SD因此成為低功率器件的最好選擇。一個第四代IGBT與超高速軟恢復(fù)反向并聯(lián)二極管協(xié)同封裝,并且為最低飽和電壓和低工作頻率(<1kHz)進(jìn)行優(yōu)化。在10A下的典型Vce(on)為1.4V。針對低正向降壓及反向漏電流,跨越低側(cè)IGBT的協(xié)同封裝二極管已經(jīng)優(yōu)化了,以在續(xù)流和反向恢復(fù)期間把損耗降到最低。

逆變器效率
圖2展示了系統(tǒng)層面的全橋功率逆變器電路。就如圖中所示,H橋的每一支管腳由高電流、高速柵極驅(qū)動器IC,以及獨(dú)立低和高側(cè)參考輸出通道所驅(qū)動。驅(qū)動器IRS2106SPBF的浮動通道容許自舉電源為高側(cè)功率電器件工作。因此,它免除了高側(cè)驅(qū)動對隔離式電源的需求。這有助整體系統(tǒng)去改善逆變器的效率和減少零件數(shù)目。當(dāng)電流續(xù)流到低側(cè)IGBT協(xié)同封裝二極管,這些驅(qū)動器的自舉電容器會在每個開關(guān)周期(50μs)更新。

圖2 全橋功率逆變器電路

由于高側(cè)Q1和Q2協(xié)同封裝二極管并不受續(xù)流電流影響,同時低側(cè)Q3及Q4擁有主要的通態(tài)耗損和非常少的開關(guān)耗損,整體系統(tǒng)損耗獲得最小化,而系統(tǒng)效率就得到最大化。此外,因?yàn)樵谌魏螘r間,開關(guān)都在對角器件配對Q1和Q4,或者Q2和Q3上進(jìn)行,所以排除了直通的可能性。同時,每個輸出驅(qū)動器IC具備高脈沖電流緩沖級以最小化驅(qū)動器的直通。這個逆變器的另一個突出功能,是它以單一直流母線供電運(yùn)作。因此,排除了負(fù)直流母線的需求。簡單點(diǎn)來說,針對整體逆變器,以上這些安排全部都可以轉(zhuǎn)化為更高的效率和更少的零件數(shù)目。更少的零件也表示設(shè)計可以占更少的空間,以及擁有更簡短的物料清單。

在這個逆變器設(shè)計中,+20V電源首先用來推動微型處理器,并且管理不同的電路。有關(guān)代碼的實(shí)現(xiàn),這個逆變器解決方案中采用的8位微型控制器PIC18F1320會為IGBT驅(qū)動器產(chǎn)生信號,由此最終提供用來驅(qū)動IGBT的信號。以專用先進(jìn)高電壓IC工藝過程 (G5 HVIC)以及鎖存免疫CMOS技術(shù)的柵極驅(qū)動器集成高電壓轉(zhuǎn)換和終端技術(shù),使驅(qū)動器能夠從微型控制器的低電壓輸入產(chǎn)生適當(dāng)?shù)臇艠O驅(qū)動信號。有關(guān)的邏輯輸入與標(biāo)準(zhǔn)CMOS或LSTTL輸出相容,邏輯電壓可低至3.3V。

超高速二極管D1和D2提供路徑來把電容器C2及C3充電,并且確保高側(cè)驅(qū)動器獲得正確的動力。圖3描繪出相關(guān)的輸出波形。如圖所示,在正輸出半周期內(nèi),高側(cè)IGBT Q1經(jīng)過正弦PWM調(diào)制,但低側(cè)Q4就保持開通狀況。同樣地,在負(fù)輸出半周期內(nèi),高側(cè)Q2經(jīng)過正弦PWM調(diào)制,而低側(cè)Q3則保持開通狀況。這種開關(guān)技術(shù)在輸出LC濾波器之后,于電容器C4的兩端提供60Hz交流正弦波。

[page]


圖3 電容器充電波形

逆變器是為500W的輸出而設(shè)計,測量所得的交流輸出功率是480.1W,功率損耗則是14.4W。在60Hz的頻率下,交流輸出電壓有117.8V,輸出電流是4.074A。這個配置獲得97.09%的效率。利用相似的配置,將逆變器改為針對200W輸出,然后再重新測量轉(zhuǎn)換效率。結(jié)果顯示,在這個負(fù)載下,交流功率為214W,功率耗損有6.0W,而在1.721A的輸出電流下,60Hz輸出電壓為124.6V。在這個功率額定值下,所得的轉(zhuǎn)換效率為97.28%。即使在較低一端的輸出功率(100W),我們也看到相似的效率性能。

簡單來說,通過把適當(dāng)?shù)母唠妷候?qū)動器與優(yōu)化了的低側(cè)和高側(cè)高電壓IGBT結(jié)合,我們在這里提到的太陽能逆變器設(shè)計,能夠在100~500W的功率輸出范圍內(nèi)持續(xù)提供高轉(zhuǎn)換效率性能。由于轉(zhuǎn)換效率非常高,所以有關(guān)的低功率損耗并不會帶來任何溫度管理挑戰(zhàn)。因此,在最高500W的輸出功率下,高側(cè)IGBT (IRGB4062DPBF) 的結(jié)溫大約80℃,比最高的特定結(jié)溫175℃要低于一半。同樣地,在一樣的功率水平下,低側(cè)IGBT (IRG4BC20SD-PBF)顯示83℃的結(jié)溫。同時,當(dāng)輸出功率達(dá)到200W左右,溫度還會變得更低。

要采購開關(guān)么,點(diǎn)這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
壓控振蕩器 壓力傳感器 壓力開關(guān) 壓敏電阻 揚(yáng)聲器 遙控開關(guān) 醫(yī)療電子 醫(yī)用成像 移動電源 音頻IC 音頻SoC 音頻變壓器 引線電感 語音控制 元件符號 元器件選型 云電視 云計算 云母電容 真空三極管 振蕩器 振蕩線圈 振動器 振動設(shè)備 震動馬達(dá) 整流變壓器 整流二極管 整流濾波 直流電機(jī) 智能抄表
?

關(guān)閉

?

關(guān)閉