你的位置:首頁 > 電源管理 > 正文

DC-DC轉(zhuǎn)換器初級電流檢測方法

發(fā)布時間:2011-11-22

中心議題: 解決方案:
  • 電阻直接取樣
  • 利用霍爾元件(LEM)取樣
  • 利用電流互感器取樣

引言


在開關電源設計中,很重要的一項內(nèi)容是過載保護功能的設計,尤其是在空間領域,由于其高可靠、高風險、不可維修的特性,使得空間用DC-DC轉(zhuǎn)換器要具備可靠的過載保護功能。

過載保護功能是指在負載過載情況下,能有效保護DC-DC轉(zhuǎn)換器不會因過熱而損壞。由于用電負載不同,對過載保護功能要求也不同??刂葡到y(tǒng)要求過載后DC-DC轉(zhuǎn)換器不能斷電,其采取限流保護;有效載荷系統(tǒng)要求可以在過載后DC-DC轉(zhuǎn)換器斷電,其采取截流保護。

設計過載保護就需要檢測電路中的電流,DC-DC轉(zhuǎn)換器的電流取樣可以直接檢測輸出回路的電流,例如次級整流回路的電流;也可以檢測初級回路的電流,例如流過功率MOSFET管的電流。

電流檢測的一般方式

電流檢測常用的方式為電阻直接取樣、利用霍爾元件(LEM)取樣和利用電流互感器取樣。

用電阻取樣易于實現(xiàn),電路設計簡單,但損耗大,檢測信號易受干擾,適用于小功率轉(zhuǎn)換電路,電路如圖1所示,其中R1為電流檢測電阻。以源端平均電流1A為例,常用的電流控制型PWM控制器UC1845的電流保護檢測電壓為1V,這樣需要的電阻為1Ω,功耗為1W,按照航天器元器件降額要求(GJB/Z 35-93《元器件降額準則》),至少選用2W的電阻。而一個2W電阻的封裝對于模塊電源來說體積較大。
用霍爾元件雖然檢測精度較高,但成本、體積常常對于模塊電源來說還是無法接受。

一般電流互感器的特性介于電阻和霍爾元件之間,是用得最多的一種電流檢測方法。DC-DC轉(zhuǎn)換器中常用的是脈沖直流互感器,其原理如圖2所示,工作方式為單向磁化,類似正激轉(zhuǎn)換器。當初級電流流通時,磁芯中磁場逐漸增大;當初級電流不再增加時,次級感應電勢將二極管擊穿,使磁芯復位到剩磁感應強度Br。

通常初級線圈為1匝,次級匝數(shù)很多,這樣可以減小次級反射到初級的阻抗,以減小對初級的影響。
[page]
如果不考慮線圈電阻,則次級感應電壓可以近似為電壓源,脈沖直流互感器的設計依據(jù)公式(1):


式中:e2為次級感應電壓,Ton為導通時間,N2為次級線圈匝數(shù),Ae為磁芯有效截面積,△B為工作磁感應強度,單位為特斯拉(T)。

互感器勵磁電流im有如下關系式:


一般電流互感器初級匝數(shù)為1,即N1=1,則(3)式可以表示為:


式中:AL為磁芯電感系數(shù),表達式為:

如果定義電流檢測誤差為:

即電流互感器設計公式為:

用輸入差模電感作電流互感器的原理

由于電磁兼容性的需要,DC-DC轉(zhuǎn)換器輸入端都要加EMC濾波器,通常的濾波器由共模濾波電感、差模濾波電感、濾波電容組成,如圖3所示。

由于輸入回路串接了工作于開關狀態(tài)的功率開關管,因此輸入端有兩個電流回路,一個是輸入電容通過輸入電感充電回路,另一個是輸入電容通過變壓器初級向功率開關管放電回路。

用輸入差模電感作電流互感器,檢測輸入電流的應用電路如圖4所示。
[page]
下面推導互感器次級感應電壓與輸入電流的關系。

如果忽略T1次級反射阻抗的影響,可以將T1初級等效成電流值為輸入電流Iin的恒流源,主變壓器初級及開關管V1可以等效成受占空比控制的脈動電流源。

不考慮V1的導通與截止時間,且整個轉(zhuǎn)換器工作在連續(xù)模式,主變壓器初級導通時的電流可以近似為常值,這樣整個工作周期內(nèi)主要各點電壓、電流波形如圖5所示。

電路工作于穩(wěn)態(tài)后,t0~t1時間段V1關斷,輸入通過Iin給輸入電容Cin充電;t1~t2時間段V1導通,輸入電容Cin通過主變壓器和V1放電,如此循環(huán)。

可以推導輸入電流與電容紋波電壓的關系為:


因此可以把輸入電容上的紋波電壓等效為T1初級的交流信號源,如圖6所示。

互感器初級按照一般差模電感進行設計,本文再不贅述了。設計次級時,此時不能按照一般電流互感器次級設計,而是把電流互感器次級作為正激變壓器次級去設計,次級匝數(shù)為:


電路仿真

作者用Saber-2005仿真軟件對這一應用電路進行了仿真分析,仿真電路如圖7所示。輸出電壓為28.5V,輸出電流步長為0.1A,從0A變化到4A。

測試數(shù)據(jù)


作者設計了一個開關電源,輸入互感器用MPP磁芯55045A2,初級而數(shù)22匝,次級匝數(shù)220匝,輸出電壓28V,輸出電流步長為0.1 A,從0A變化到4A,輸出電流與互感器次級感應電壓Vout的實測曲線如圖8所示。

結(jié)語


本文探討了一種利用輸入濾波差模電感,做DC-DC轉(zhuǎn)換器輸入電流互感器的原理與設計方法,在電路應用中可以省略單獨的電流互感器。當然對于具體電路,其設計要依賴于輸入濾波電容的大小,因此對于一個具體的DC-DC轉(zhuǎn)換器,應先設計輸入濾波電路,再設計該電流互感器。
要采購轉(zhuǎn)換器么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
壓控振蕩器 壓力傳感器 壓力開關 壓敏電阻 揚聲器 遙控開關 醫(yī)療電子 醫(yī)用成像 移動電源 音頻IC 音頻SoC 音頻變壓器 引線電感 語音控制 元件符號 元器件選型 云電視 云計算 云母電容 真空三極管 振蕩器 振蕩線圈 振動器 振動設備 震動馬達 整流變壓器 整流二極管 整流濾波 直流電機 智能抄表
?

關閉

?

關閉